Agricultural Survey Quarterly Meeting

Joshua Moll,
Research Economist
Employment Security Department
Labor Market and Economic Analysis
Program Evaluation, Research & Analysis

Presented 02/01/2019
Agenda

- Survey background
- Overview of H-2A program
- Employer estimation
- Moving forward
Survey background

What:
- Wage rates and employment practices for agricultural worksites in Washington state

Why:
- U.S. Department of Labor (USDOL) requires survey every year for occupations and activities that involve temporary foreign workers
- USDOL uses survey results to establish wage rates and employment standards for agricultural employment contracts
Survey background

- **Who:**
 - Agricultural business under certain industry codes (NAICS)
 - Agricultural workers involved in apple and cherry harvesting

- **How:**
 - Survey development and administration
 - Data collected is aggregated and analyzed by ESD
 - Results provided on Employment & Training Administration (ETA) 232 forms
Overview of H-2A program

- Regulated by USDOL
- Used when there is a perceived shortage of domestic workers
- Employment is seasonal or temporary
- Employment of H-2A worker must not negatively impact wages and employment practices for similarly employed domestic workers
Employer estimation

- ESD requirements
- Caveats of estimation
- Estimation method
 - Method overview
 - Method assumptions
 - Analytical steps
- Results of application
 - Industry estimation
 - Crop estimation
 - Crop variety estimation
Employer estimation: ESD requirements

- USDOL/ETA form 232 requires:
 - Total number of employers contacted during the survey
 - Total number of respondents
 - Total number of U.S. workers reported by employers
 - Estimated number of U.S. workers
 - Estimated number of employers
 - Estimated number of crop variety growers
Employer estimation: caveats of estimation

- ESD administrative databases are limited:
 - Unemployment Insurance covers employers by NAICS and worksite location
 - Recorded by NAICS industry, not by crop or crop-variety
 - Single worksites can produce multiple crops and crop varieties
 - Reporting lag
 - Administrative databases do not tell us who qualifies for the survey
Employer estimation: method overview

- Classical capture-recapture estimators:
 - Classical experiment is to study the demographic characteristics of an animal population and determine the population size
 - Animals are captured, marked with a tag and released back into the population
 - The operation gets repeated several times
 - Each animal is associated with a capture history
 - Capture histories indicate a “catch” or a “miss” by a binary vector (1 or 0)

- General form of a population size estimator:
 - \(\hat{N} = n + \mu_0 \)
 - \(n \), is the number of units caught at least once
 - \(\mu_0 \), is the estimated number of units missed
 - \(\hat{N} \), is the estimated population size
History of capture-recapture and applications:

- Originally developed in the field of wildlife management (Petersen, 1896)
 - Petersen estimator
- Gained popularity with a treatment by Chapman (Chapman, 1951) in the field of ecology
- Log-linear treatment of capture-recapture estimators was later applied by Fienberg and Cormack (Fienberg, 1972; Cormack, 1989) to deal with heterogeneity of individual behaviors, which can bias estimators of abundance
- Has been further applied to fields such as: epidemiology, the evaluation of census undercount and software testing (International Working Group for Disease Monitoring and Forecasting, 1995 a,b; Darroch, Fienberg, Glonek & Junker 1993; Wohlin, Runeson & Brantestam 1995; Ebrahimi 1997; Briand, El Emam, Freimut & Leiterberger, 2000)
Employer estimation: method overview continued...

- Log-linear models for capture recapture:
 1) Determine the probability of a unit to experience a capture history
 - Example: Determine the likelihood of a crop-variety firm responding to the surveys
 2) From understanding the probability of capture, the expected number of units having a capture history can be determined
 3) The expected number of units having a capture history then is re-expressed as a log-linear model
 - Expression as a log-linear model aids in reducing inherent bias from the data and allows the fitting of a regression model to estimate abundance
 4) Fit a log-linear model
 - Poisson regression, deals with count data
 - Helps us identify bias, correct any bias found and produce a stable estimate
 - Enables the estimation of firms missed during the search occasions
 5) Abundance estimation
 - Produces final abundance estimate
 - Uses the number found at least once and the estimated number missed
Employer estimation: method overview continued…

- Base types of general linear models:
 - M_0: all capture occasions are independent with a common probability of being caught
 - M_t: each capture occasion has its own capture probability (temporal effect or change)
 - Best suited for three or more search occasions
 - M_b: a unit’s behavior changes after the first capture (behavioral effect or change)
 - Best suited for three or more search occasions
Employer estimation: general model requirements and assumptions

- General model requirements:
 - Have at least two capture occasions
 - *Example*: Two agricultural survey iterations
 - Capture occasions occur over a short period of time
 - Search procedures are conceptually equivalent
 - *Example*: Survey forms and the type of search being conducted are the same

- Assumptions:
 - Population in question is closed:
 - The population is finite
 - Immigration into the population area is negligible
 - Mortality rates are negligible
 - *Example*: The size of the closed population does not drastically vary over a short period of time
Employer estimation: overview continued...

- Log-linear model fitted with a Poisson Regression for capture-recapture experiments (M_0):
 1) Probability of a unit to experience a capture history, ω,
 - $\Pr(\omega) = (1 - p)^t - \Sigma \omega_j p \Sigma \omega_j$
 - $t =$ capture occasions
 - $p =$ single capture probability to all units
 - $\Sigma \omega_j =$ the number of times the unit is caught
 2) Therefore, the expected number of units in the population having a capture history ω is:
 - $\mu_\omega = N (1 - p)^t - \Sigma \omega_j p \Sigma \omega_j$
 3) Expected frequency re-expressed as a log-linear model:
 - $\mu_\omega = \exp \left(\log(N(1 - p)^t) + \Sigma \omega_j \log \left(\frac{p}{1-p}\right) \right)$
 4) Fit a log-linear model:
 - $E(Y) = \exp(X\beta)$
 - Y is equal to the $(2^t - 1) \times 1$ vector of the observed frequencies n_ω
 - X is a $(2^t - 1) \times 2$ design matrix
 - $\beta = (\gamma, \beta)^t$
 5) Abundance estimate:
 - $\tilde{N} = n + \exp(\gamma)$
 - $\exp(\gamma) = \exp \left(\log(N(1 - p)^t) \right) = N(1 - p)^t = N \times Pr(\omega_0) = \mu_0$
 - $\omega_0 =$ the unobservable capture history of zero capture
 - $\mu_0 =$ the expected number of units never captured
Employer estimation: analytical steps

Descriptive statistics
- Transform data to a usable format (matrix of capture histories)
 - Assign binary indicator for each capture occasion
 - Produce descriptive statistics for capture-recapture data

Model fitting
- Fit various loglinear models for a closed population
 - M_0, M_t, M_b

Model selection
- Produce fit statistics for the number of captures on each capture occasion and model performance.
 - AIC, BIC, standard error, etc.
 - Using model fit statistics select the model to be used for estimation

Abundance estimate
- Apply the selected model to compute the abundance estimation and 95% confidence interval of a closed population
Results: application to estimate industry firm abundance

- Method was applied to survey data collected from 2015 and 2017:
 - 2015 and 2017 data was made compatible in order to apply this technique
 - 2017 survey data was far more granular in terms of what crop-varieties were allowed to be reported
 - Comparison against adjusted 2017 average annual firm counts by six digit NAICS code from QCEW
 - QCEW firm counts were adjusted to meet the scope of the survey
 - Ratios of eligibility were extracted from 2015 (74%) and the most recent 2018 (80%) survey disposition records and then averaged
 - Therefore, on average 77% (0.77) are considered eligible under the scope of the survey
 - Example: $100_{\text{total firms}} \times 0.77_{\text{eligible}} = 77_{\text{adjusted firms}}$
Results: Industry estimates

<table>
<thead>
<tr>
<th>Industry (NAICS)</th>
<th>Adjusted 2017 QCEW firm count</th>
<th>Abundance estimate</th>
<th>AE</th>
<th>APE</th>
<th>Low 95</th>
<th>Hi 95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other vegetable and melon farming</td>
<td>225</td>
<td>181</td>
<td>44</td>
<td>20%</td>
<td>128</td>
<td>284</td>
</tr>
<tr>
<td>Apple orchards</td>
<td>588</td>
<td>549</td>
<td>39</td>
<td>7%</td>
<td>483</td>
<td>633</td>
</tr>
<tr>
<td>Grape vineyards</td>
<td>156</td>
<td>149</td>
<td>7</td>
<td>4%</td>
<td>118</td>
<td>201</td>
</tr>
<tr>
<td>Berry (except strawberry) farming</td>
<td>176</td>
<td>180</td>
<td>4</td>
<td>2%</td>
<td>137</td>
<td>253</td>
</tr>
<tr>
<td>Fruit and tree nut combination farming</td>
<td>18</td>
<td>13</td>
<td>5</td>
<td>28%</td>
<td>8</td>
<td>>37.5</td>
</tr>
<tr>
<td>Other noncitrus fruit farming</td>
<td>713</td>
<td>695</td>
<td>18</td>
<td>3%</td>
<td>625</td>
<td>782</td>
</tr>
<tr>
<td>All other miscellaneous crop farming</td>
<td>209</td>
<td>217</td>
<td>8</td>
<td>4%</td>
<td>129</td>
<td>442</td>
</tr>
</tbody>
</table>
Results: Crop estimates

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Apples</td>
<td>943</td>
<td>830</td>
<td>1086</td>
<td>316</td>
<td>292</td>
<td>98</td>
</tr>
<tr>
<td>Berries</td>
<td>249</td>
<td>191</td>
<td>344</td>
<td>61</td>
<td>87</td>
<td>22</td>
</tr>
<tr>
<td>Cherries</td>
<td>759</td>
<td>665</td>
<td>880</td>
<td>235</td>
<td>276</td>
<td>86</td>
</tr>
<tr>
<td>Grapes</td>
<td>266</td>
<td>200</td>
<td>379</td>
<td>70</td>
<td>76</td>
<td>20</td>
</tr>
<tr>
<td>Pears</td>
<td>513</td>
<td>418</td>
<td>649</td>
<td>131</td>
<td>159</td>
<td>41</td>
</tr>
</tbody>
</table>
Results: Crop variety estimates

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple</td>
<td>Braeburn</td>
<td>105</td>
<td>42</td>
<td>>315</td>
<td>11</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>Apple</td>
<td>Cripps pink</td>
<td>113</td>
<td>45</td>
<td>>338</td>
<td>5</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>Apple</td>
<td>Fuji</td>
<td>360</td>
<td>247</td>
<td>577</td>
<td>61</td>
<td>81</td>
<td>14</td>
</tr>
<tr>
<td>Apple</td>
<td>Gala</td>
<td>646</td>
<td>506</td>
<td>859</td>
<td>133</td>
<td>159</td>
<td>33</td>
</tr>
<tr>
<td>Apple</td>
<td>Golden delicious</td>
<td>439</td>
<td>324</td>
<td>634</td>
<td>82</td>
<td>110</td>
<td>21</td>
</tr>
<tr>
<td>Apple</td>
<td>Granny smith</td>
<td>455</td>
<td>278</td>
<td>865</td>
<td>54</td>
<td>74</td>
<td>9</td>
</tr>
<tr>
<td>Apple</td>
<td>Honeycrisp</td>
<td>476</td>
<td>327</td>
<td>757</td>
<td>56</td>
<td>113</td>
<td>15</td>
</tr>
<tr>
<td>Apple</td>
<td>Red delicious</td>
<td>423</td>
<td>310</td>
<td>618</td>
<td>63</td>
<td>121</td>
<td>20</td>
</tr>
</tbody>
</table>
Results: Crop variety estimates continued…

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Berry</td>
<td>Blueberry</td>
<td>182</td>
<td>117</td>
<td>328</td>
<td>35</td>
<td>46</td>
<td>9</td>
</tr>
<tr>
<td>Berry</td>
<td>Raspberry</td>
<td>69</td>
<td>51</td>
<td>104</td>
<td>22</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>Berry</td>
<td>Strawberry</td>
<td>37</td>
<td>20</td>
<td>105</td>
<td>9</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Cherry</td>
<td>Dark red</td>
<td>444</td>
<td>332</td>
<td>641</td>
<td>40</td>
<td>200</td>
<td>18</td>
</tr>
<tr>
<td>Cherry</td>
<td>Red</td>
<td>725</td>
<td>551</td>
<td>1001</td>
<td>167</td>
<td>118</td>
<td>28</td>
</tr>
<tr>
<td>Cherry</td>
<td>Yellow</td>
<td>441</td>
<td>308</td>
<td>685</td>
<td>57</td>
<td>111</td>
<td>16</td>
</tr>
<tr>
<td>Pear</td>
<td>Bartlett</td>
<td>400</td>
<td>308</td>
<td>547</td>
<td>83</td>
<td>121</td>
<td>26</td>
</tr>
<tr>
<td>Pear</td>
<td>Bosc</td>
<td>469</td>
<td>200</td>
<td>>1406</td>
<td>18</td>
<td>57</td>
<td>3</td>
</tr>
<tr>
<td>Pear</td>
<td>D’anjou</td>
<td>355</td>
<td>248</td>
<td>557</td>
<td>60</td>
<td>86</td>
<td>15</td>
</tr>
</tbody>
</table>
Moving forward

- January 31st, 2019:
 - Survey administration and data collection closed
 - Worker survey response rate: 42.91%
 - Employer survey response rate (1/20/2019): 42.14%
- February 28th, 2019:
 - University of Washington delivers final survey data set to LMEA
- March, 2019:
 - Agricultural survey quarterly meeting to discuss worker estimation method
 - Announcement of date and time will follow shortly
 - Final employer and worker survey analysis and estimation
- April, 2019:
 - Conference call with all stakeholders presenting final results
 - Feedback period of approximately one week
 - Submission of final results to USDOL
 - Publication of final results is contingent upon USDOL
 - Begin administrative planning for 2019 survey iteration
References

Contact information

Steven Ross, Director
Employment Security Department
Labor Market Information
Labor Market and Economic Analysis
(360) 507-9615
sross@esd.wa.gov

Gustavo Avilés, Manager
Employment Security Department
Program Evaluation, Research & Analysis
Labor Market and Economic Analysis
(360) 507-9552
gaviles@esd.wa.gov

Joshua Moll, Research Economist
Employment Security Department
Program Evaluation, Research & Analysis
Labor Market and Economic Analysis
(360) 507-9554
jmoll@esd.wa.gov