Nevada Department of Employment, Training and Rehabilitation
Research and Analysis Bureau
Legislative District Profiles

This script requires an API key from the Census Bureau.
Getting and installing this is documented in the help for the tidycensus package

loader <- function(x)
 for(i in x)
 if(!require(i, character.only = TRUE))
 install.packages(i, dependencies = TRUE)
 require(i, character.only = TRUE)

select = dplyr::select
extract = tidyr::extract

###
Set State Variable
###
Abb_ST <- "AK" # This is used in the code to get data
Name_State <- "Alaska" # This is used in labelling

###
Build ACS Variable List
###
var1 <- load_variables(2017, "acs5")
var2 <- load_variables(2017, "acs5/subject")
var <- rbind(var1, var2)
rm(var1)
rm(var2)
var_filtered <- var %>%
 filter(str_detect(name, "2301_")) %>%
 separate(label, c(NA,"Data","Demographic_Population","Demographic_Type","Demographic_Group","Demographic_Subgroup_1","Demographic_Subgroup_2"), sep="!!") %>%
 mutate(Group = paste0(
 ifelse(is.na(Demographic_Type),paste0(" ",Demographic_Type),""),
 ifelse(is.na(Demographic_Group),paste0(" : ",Demographic_Group),""),
 ifelse(is.na(Demographic_Subgroup_1),paste0(" , ",Demographic_Subgroup_1),""),
 ifelse(is.na(Demographic_Subgroup_2),paste0(" , ",Demographic_Subgroup_2),""
))
 %>%
 mutate(Group = str_to_title(Group)) %>%
 mutate(Group = str_replace_all(Group,c(" And "=" and ", " Or "=" or ", " To "=" to "))) %>%
 mutate(Group = str_to_title(Group)) %>%
 mutate(Group = str_replace_all(Group,Group,c(" And "=" and ", " Or "=" or ", " To "=" to ")))

###
Get TIGRIS Data
###
options(tigris_use_cache = TRUE)
Primary and Secondary Roads

STroads <- primary_secondary_roads(ABB_ST, year = 2017)

STroads_Primary <- STroads[STroads$RTTYP == "I",]
STroads_Secondary <- STroads[STroads$RTTYP == "U",]

Counties lines for statewide map
STCounties <- counties(ABB_ST)

Census Blocks
#STBlocks <- blocks(ABB_ST)

Zip Code Areas
#STZips <- zctas(state = ABB_ST)

State Assembly and Senate Districts
ST_Districts_Lower <- state_legislative_districts(ABB_ST, house = "lower") %>%
 rename(SLDST = SLDLST)
ST_Districts_Upper <- state_legislative_districts(ABB_ST, house = "upper") %>%
 rename(SLDST = SLDUST)
ST_Districts <- rbind(ST_Districts_Lower, ST_Districts_Upper)

ST_Districts <- ST_Districts %>%
 select(NAMELSAD) %>%
 mutate(rowid = 1:nrow(ST_Districts))

Get ACS Data

data1 <- get_acs(geography = "tract", state = ABB_ST, variables = var_filtered$name, output = "tidy",
 geometry = TRUE, cache_table = TRUE, survey = "acs5")

ST_Tract_Data <- data1 %>%
 select(-moe) %>%
 left_join(select(var_filtered, name, data), by = c("variable" = "name")) %>%
 separate(variable, into = c("AAA", NA, "BBB"), sep = ",") %>%
 mutate(variable = paste0("AAA", "_C01_", "BBB")) %>%
 select(-c(AAA, BBB)) %>%
 spread(data, estimate) %>%
 left_join(select(as(data.frame(unique(ST_Tract_Data$Group_Alone))), Group), by = c("variable" = "name")) %>%
 left_join(select(as(data.frame(unique(ST_Tract_Data$Group_Alone)), Group), Demographic_List, Demographic_Subgroup_1, Demographic_Subgroup_2, concept)) %>%
 mutate(Group_Alone = ifelse(Group_Alone == "", Group, Group_Alone)) %>%
 rename(LFPR = "Labor Force Participation Rate", UR = "Unemployment rate", Population = Total,
 EPR = "Employment/Population Ratio") %>%
 mutate(Engaged = Population * LFPR * UR / 10000,
 Employed = LFPR * Population / 100,
 Unemployed = LF - Employed)

Demographic_List <- as.data.frame(unique(ST_Tract_Data$Group_Alone))
Demographic_List <- rowid_to_column(Demographic_List, "ID")
Demographic_List <- rename(Demographic_List, Group = "unique(ST_Tract_Data$Group_Alone)"
Demographic_List$Ordered_Groups <- paste0("Group ", str_pad(Demographic_List$ID, 2, pad = "0"), ":")

ST_Tract_Data <- left_join(ST_Tract_Data, select(Demographic_List, Group, Ordered_Groups), by = c("Group_Alone" = "Group"))

Population2064 <- c("Group 21: Population 20 to 64 Years",
 "Group 22: Male",
 "Group 23: Female",
 "Group 24: Male, with own children under 18 years",
 "Group 25: Female, with own children under 18 years, with own children under 6 years only",
 "Group 26: Female, with own children under 18 years, with own children under 6 to 17 years",
 "Group 27: Female, with own children under 18 years, with own children only",
 "Group 28: Below Poverty Level",
 "Group 29: At or Above The Poverty Level")
"Group 30: With Any Disability"

Population2564 <- c("Group 31: Educational Attainment Population 25 to 64 Years",
"Group 32: Less Than High School Graduate",
"Group 33: High School Graduate (Includes Equivalency)",
"Group 34: Some College or Associate's Degree",
"Group 35: Bachelor's Degree or Higher")

##############################
Loop Through Districts
##############################

Clear previous spreadsheets, if any
rm(Intersection_Results)

Pre-Loop Setup
Map Values Pre-Loop
st_crs(ST_Tract_Data) <- 4269

Legend Units Text
legend_units_text <- "Population"

Footer Text
footer <- "Data by Census Tract from U.S. Census Bureau, 2013-2017 American Community Survey\nReport Prepared by Nevada Department of Employment, Training, and Rehabilitation Research and Analysis Bureau"

Mapping Data
ST_Tract_Data$mapping_data <- ST_Tract_Data$Population

tm_Area <- list()

Excel Workbook Creation Pre-Loop
Workforce Demographics ACS Table
Intersection_Results <- createWorkbook()
percent_style <- createStyle(numFmt = "0.0%")
header_style <- createStyle(wrapText = TRUE, border = "bottom", borderStyle = "double", halign = "center", valign = "center")

EQUI_header_style <- createStyle(wrapText = TRUE, border = "bottom", borderStyle = "double", halign = "center", valign = "top")

summary_style <- createStyle(fontSize = 14, textDecoration = "bold", halign = "left")
disclaimer_style <- createStyle(fontSize = 10, textDecoration = "italic", halign = "left")

HUExplanation <- "This table lists those demographic groups with an unemployment rate four percentage points higher than the district as a whole, or more than double the rate of the district as a whole."

Create Buffer Inside Perimeter
Buffer_Meters <- -50
Buffer_Degrees <- Buffer_Meters/90000

Create folder for district maps
dir.create("district_maps")

Loop Starts
for (i in 1:nrow(ST_Districts)) {

Define Local Area(s)

Define Buffer around Area to Use
Lat/Long uses Buffer in Meters, Polygons use degrees
@ 36 degrees latitude, 1 degree is approximately 90,000m
Converting m and degrees to miles, for convenienece

Tell the code below what to use for comparisons
Comparison_Area <- gBuffer(ST_Districts[i,], width = Buffer_Degrees)
Area_Name <- as.character(ST_Districts@data[i,1])

Test Outputs for Sanity
tm_shape(STCounties)+tm_polygons()+
 tm_shape(Comparison_Area)+tm_polygons(border.col="red", alpha=0)+
 tm_shape(STroads_Primary) +
 tm_lines(col="black", lwd = 3)+
 tm_shape(STroads_Secondary) +
 tm_lines(col="black", lwd = 2)

########################
Identify Overlap
########################
#Define Coordinate System for data
st_crs(ST_Tract_Data) <- 4269

#Find Intersecting data elements
Intersecting_Tracts <- st_intersects(st_as_sf(Comparison_Area), ST_Tract_Data)

#Structure data to extract matches (on row name / record basis)
Intersection_Table <- ST_Tract_Data %>%
 roenames_to_column(var="DataRow") %>%
 mutate(DataRow = as.integer(DataRow)) %>%
 filter(DataRow %in% Intersecting_Tracts[[1]])

###################
Data Tables
###################
SummaryHeader <- paste0("Workforce Summary for ",Area_Name)
SummaryDisclaimer <- "Workforce data by census tract from the U.S. Census Bureau, American Community Survey five-year average data."

#Summarize Grouped Data
Intersection_Data <- st_drop_geometry(Intersection_Table) %>%
 group_by(Ordered_Groups) %>%
 summarize(Employment = round(sum(Employed, na.rm = TRUE)),
 Unemployment = round(sum(Unemployed, na.rm = TRUE)),
 Labor_Force = round(sum(LF, na.rm = TRUE)),
 Unemployment_Rate = Unemployment / Labor_Force,
 'Labor Force Participation Rate' = Labor_Force / Population,
 'Employment Population Ratio' = Employment / Population)
Intersection_Data %<>%
 mutate(
 Comparison_Rate = case_when(
 Ordered_Groups %in% Population2064 ~ as.numeric(Intersection_Data[21,6]),
 Ordered_Groups %in% Population2564 ~ as.numeric(Intersection_Data[31,6]),
 TRUE ~ as.numeric(Intersection_Data[1,6])),
 High_Unemployment_Group = case_when(
 Unemployment_Rate - Comparison_Rate >=0.04 ~ TRUE,
 Unemployment_Rate / Comparison_Rate >= 2.00 ~ TRUE,
 TRUE ~ FALSE)
) %>%
 rename('Labor Force' = Labor_Force,
 'Demographic Group' = Ordered_Groups,
 'Unemployment Rate' = Unemployment_Rate) %>%
 select(1,5,4,2,3,6,7,8,10)
HU_Data <- filter(Intersection_Data, High_Unemployment_Group == TRUE) %>%
 rename('High Unemployment Groups' = 'Demographic Group')

###Create Output files
ACS Results
addWorksheet(Intersection_Results, Area_Name)
class(Intersection_Data$Employment) <- "comma"
class(Intersection_Data$Unemployment) <- "comma"
class(Intersection_Data$'Labor Force') <- "comma"
class(Intersection_Data$Population) <- "comma"
class(HU_Data$Employment) <- "comma"
class(HU_Data$Unemployment) <- "comma"
class(HU_Data$'Labor Force') <- "comma"
class(HU_Data$Population) <- "comma"
Data for Whole Area
writeDataTable(Intersection_Results, Area_Name, select(Intersection_Data, 1:8), startRow = 3, tableStyle = "TableStyleMedium5")

addStyle(Intersection_Results, sheet = Area_Name, style = percent_style, cols = 6, rows = 4:38)
addStyle(Intersection_Results, sheet = Area_Name, style = percent_style, cols = 7, rows = 4:38)
addStyle(Intersection_Results, sheet = Area_Name, style = percent_style, cols = 8, rows = 4:38)
addStyle(Intersection_Results, sheet = Area_Name, style = header_style, cols = 1:8, rows = 3)

Data for High Unemployment Groups
writeDataTable(Intersection_Results, Area_Name, select(HU_Data,1:8), startRow = 41, tableStyle = "TableStyleMedium3")

addStyle(Intersection_Results, sheet = Area_Name, style = percent_style, cols = 6, rows = 42:77)
addStyle(Intersection_Results, sheet = Area_Name, style = percent_style, cols = 7, rows = 42:77)
addStyle(Intersection_Results, sheet = Area_Name, style = percent_style, cols = 8, rows = 42:77)
addStyle(Intersection_Results, sheet = Area_Name, style = header_style, cols = 1:8, rows = 41)

setColWidths(Intersection_Results, sheet = Area_Name, cols=1:8, widths=14)
setColWidths(Intersection_Results, sheet = Area_Name, cols=1, widths=60)
setRowHeights(Intersection_Results, sheet = Area_Name, rows=3, heights=45)
setRowHeights(Intersection_Results, sheet = Area_Name, rows=41, heights=45)

mergeCells(Intersection_Results,sheet = Area_Name, cols = 1:8, rows = 1)
mergeCells(Intersection_Results,sheet = Area_Name, cols = 1:8, rows = 2)
mergeCells(Intersection_Results,sheet = Area_Name, cols = 1:8, rows = 40)

writeData(Intersection_Results, sheet = Area_Name, xy = c(1,1), SummaryHeader)
writeData(Intersection_Results, sheet = Area_Name, xy = c(1,2), SummaryDisclaimer)
writeData(Intersection_Results, sheet = Area_Name, xy = c(1,40), HUExplanation)

addStyle(Intersection_Results, sheet = Area_Name, cols=1, rows=1, summary_style)

writeComment(Intersection_Results, sheet = Area_Name, xy = c(3,3), comment = createComment("Individuals working or looking for work at the time of the survey.", author = "DETR", style = NULL, visible = FALSE, width = 4, height = 3))
writeComment(Intersection_Results, sheet = Area_Name, xy = c(4,3), comment = createComment("Individuals who are working at the time of the survey.",author = "DETR", style = NULL, visible = FALSE, width = 4, height = 3))
writeComment(Intersection_Results, sheet = Area_Name, xy = c(5,3), comment = createComment("Individuals not working, who have looked in the past four weeks at the time of the survey.", author = "DETR", style = NULL, visible = FALSE, width = 4, height = 3))
writeComment(Intersection_Results, sheet = Area_Name, xy = c(6,3), comment = createComment("Total Unemployment divided by Total Labor Force", author = "DETR", style = NULL, visible = FALSE, width = 4, height = 3))
writeComment(Intersection_Results, sheet = Area_Name, xy = c(7,3), comment = createComment("Total Labor Force divided by Total Population", author = "DETR", style = NULL, visible = FALSE, width = 4, height = 3))
writeComment(Intersection_Results, sheet = Area_Name, xy = c(8,3), comment = createComment("Total Employment divided by Total Population", author = "DETR", style = NULL, visible = FALSE, width = 4, height = 3))

freezePane(Intersection_Results, sheet = Area_Name, firstActiveRow = 3, firstActiveCol = 2)
pageSetup(Intersection_Results, sheet = Area_Name, orientation="landscape", fitToWidth=TRUE, fitToHeight=TRUE)

Create Maps

bb_Area <- bb(Comparison_Area, ylim=c(-2,3), xlim=c(-2,3),relative=TRUE)
bbox_to_SpatialPolygons(bb(Comparison_Area, ylim=c(-2,3), xlim=c(-2,3),relative=TRUE, output="extent"), CRS("+proj=longlat +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +no_defs"))

tm_Area[[i]] <-
tm_layout(main.title=paste0("Census Tracts Overlapping ",Area_Name),
legend.outside=TRUE,
legend.bg.color="white",
legend.bg.alpha=0.5,
legend.frame="black",
legend.outside.position="right",
attr.outside=TRUE)

#shape gets data from ST_Tract_Data, bounded by the Area parameters set above
tm_shape(filter(Intersection_Table, Ordered_Groups == "Group 01: Population 16 Years and Over"), bbox=bb_Area) +

tm_fill(col = "Population",
title = "Population",
palette = "Blues",
n=25,
textNA = "No Data",
style="quantile"
)

#Adding Road data for reference
tm_shape(crop_shape(STroads_Primary,bb_AreaCrop), bbox=bb_Area) +
tm_lines(col="black", lwd = 3)+
tm_shape(crop_shape(STroads_Secondary,bb_AreaCrop)) +
tm_lines(col="black", lwd = 2)+

tm_shape(crop_shape(STroads,bb_AreaCrop)) +
tm_lines(col="black", lwd = 0.5)+

tm_shape(Comparison_Area) +
tm_polygons(alpha = 0,
border.col = "red",
lwd = 3.0
)+

#Credits / Annotation
tm_credits(
 text = footer,
 position = c("left","bottom"),
 size = 1.2
)

PDFs of counted tracts for district. Comment out if maps are not needed.
tmap_save(tm_Area[[i]], paste0("district_maps/",Name_State,"",ST_Districts@data[i,1],".pdf"),
width = 8.5, height = 11, units = "in")

##################
Close Loop
##################
End Loop
Close PDF

Save Workbook
saveworkbook(Intersection_Results, paste0("Workforce Details, ",Name_State," Legislative Districts.xlsx"), overwrite = TRUE)