## Agricultural Survey Quarterly Meeting

Joshua Moll,<br>Research Economist<br>Employment Security Department<br>Labor Market and Economic Analysis<br>Program Evaluation, Research \& Analysis

## Presented 02/01/2019



Employment
Security
Department
WASHINGTON STATE

## Agenda

- Survey background
- Overview of H-2A program
- Employer estimation
- Moving forward


## Survey background

- What:
- Wage rates and employment practices for agricultural worksites in Washington state
- Why:
- U.S. Department of Labor (USDOL) requires survey every year for occupations and activities that involve temporary foreign workers
- USDOL uses survey results to establish wage rates and employment standards for agricultural employment contracts


## Survey background

- Who:
- Agricultural business under certain industry codes (NAICS)
- Agricultural workers involved in apple and cherry harvesting
- How:
- Survey development and administration
- Data collected is aggregated and analyzed by ESD
- Results provided on Employment \& Training Administration (ETA) 232 forms


## Overview of H-2A program

- Regulated by USDOL
- Used when there is a perceived shortage of domestic workers
- Employment is seasonal or temporary
- Employment of H-2A worker must not negatively impact wages and employment practices for similarly employed domestic workers


## Employer estimation

- ESD requirements
- Caveats of estimation
- Estimation method
- Method overview
- Method assumptions
- Analytical steps
- Results of application
- Industry estimation
- Crop estimation
- Crop variety estimation


## Employer estimation: ESD requirements

- USDOL/ETA form 232 requires:
- Total number of employers contacted during the survey
- Total number of respondents
- Total number of U.S. workers reported by employers
- Estimated number of U.S. workers
- Estimated number of employers
- Estimated number of crop variety growers


## Employer estimation: caveats of estimation

- ESD administrative databases are limited:
- Unemployment Insurance covers employers by NAICS and worksite location
- Recorded by NAICS industry, not by crop or cropvariety
- Single worksites can produce multiple crops and crop varieties
- Reporting lag
- Administrative databases do not tell us who qualifies for the survey


## Employer estimation: method overview

- Classical capture-recapture estimators:
- Classical experiment is to study the demographic characteristics of an animal population and determine the population size
- Animals are captured, marked with a tag and released back into the population
- The operation gets repeated several times
- Each animal is associated with a capture history
- Capture histories indicate a "catch" or a "miss" by a binary vector (1 or 0)
- General form of a population size estimator:
- $\widehat{N}=n+\mu_{0}$
- $n$, is the number of units caught at least once
- $\mu_{0}$, is the estimated number of units missed
- $\widehat{N}$, is the estimated population size


## Employer estimation: method overview continued...

- History of capture-recapture and applications:
- Originally developed in the field of wildlife management (Petersen, 1896)
- Petersen estimator
- Gained popularity with a treatment by Chapman (Chapman, 1951) in the field of ecology
- Log-linear treatment of capture-recapture estimators was later applied by Fienberg and Cormack (Fienberg, 1972; Cormack, 1989) to deal with heterogeneity of individual behaviors, which can bias estimators of abundance
- Has been further applied to fields such as: epidemiology, the evaluation of census undercount and software testing (International Working Group for Disease Monitoring and Forecasting, 1995 a,b; Darroch, Fienberg, Glonek \& Junker 1993; Wohlin, Runeson \& Brantestam 1995; Ebrahimi 1997; Briand, El Emam, Freimut \& Leiterberger, 2000)


## Employer estimation: method overview

## continued...

- Log-linear models for capture recapture:

1) Determine the probability of a unit to experience a capture history

- Example: Determine the likelihood of a crop-variety firm responding to the surveys

2) From understanding the probability of capture, the expected number of units having a capture history can be determined
3) The expected number of units having a capture history then is reexpressed as a log-linear model

- Expression as a log-linear model aids in reducing inherent bias from the data and allows the fitting of a regression model to estimate abundance

4) Fit a log-linear model

- Poisson regression, deals with count data
- Helps us identify bias, correct any bias found and produce a stable estimate
- Enables the estimation of firms missed during the search occasions

5) Abundance estimation

- Produces final abundance estimate
- Uses the number found at least once and the estimated number missed


## Employer estimation: method overview

## continued...

- Base types of general linear models:
- $M_{0}$ : all capture occasions are independent with a common probability of being caught
- $M_{t}$ : each capture occasion has it's own capture probability (temporal effect or change)
- Best suited for three or more search occasions
- $M_{b}$ : a unit's behavior changes after the first capture (behavioral effect or change)
- Best suited for three or more search occasions


## Employer estimation: general model requirements and assumptions

- General model requirements:
- Have at least two capture occasions
- Example:Two agricultural survey iterations
- Capture occasions occur over a short period of time
- Search procedures are conceptually equivalent
- Example: Survey forms and the type of search being conduct are the same
- Assumptions:
- Population in question is closed:
- The population is finite
- Immigration into the population area is negligible
- Mortality rates are negligible
- Example: the size of the closed population does not drastically vary over a short period of time


## Employer estimation: overview continued...

- Log-linear model fitted with a Poisson Regression for capture-recapture experiments $\left(M_{0}\right)$ :

1) Probability of a unit to experience a capture history, $\omega$,:

- $\operatorname{Pr}(\omega)=(1-p)^{t-\sum \omega_{j} p \sum \omega_{j}}$
- $t=$ capture occasions
- $p=$ single capture probability to all units
- $\sum \omega_{j}=$ the number of times the unit is caught

2) Therefore, the expected number of units in the population having a capture history $\omega$ is:

- $\mu_{\omega}=N(1-p)^{t-\sum \omega_{j} p \sum \omega_{j}}$

3) Expected frequency re-expressed as a log-linear model:

- $\mu_{\omega}=\exp \left(\log \left(N\left((1-p)^{t}\right)+\sum \omega_{j} \log \left(\frac{p}{1-p}\right)\right)\right.$

4) Fit a log-linear model:

- $\quad E(Y)=\exp (X \beta)$
- $\quad Y$ is equeal to the $\left(2^{t}-1\right) \times 1$ vector of the observed frequencies $n_{\omega}$
- $\quad X$ is a $\left(2^{t}-1\right) \times 2$ design matrix
- $\quad \beta=(\gamma, \beta)^{t}$

5) Abundance estimate:

- $\widehat{N}=n+\exp (\gamma)$
- $\exp (\gamma)=\exp \left(\log \left(N\left((1-p)^{t}\right)\right)=N(1-p)^{t}=N \times \operatorname{Pr}\left(\omega_{0}\right)=\mu_{0}\right.$
- $\omega_{0}=$ the unobservable capture history of zero capture
- $\mu_{0}=$ the expected number of units never captured


## Employer estimation: analytical steps

- Transform data to a usable format (matrix of capture histories)
- Assign binary indicator for each capture occasion
- Produce descriptive statistics for capture-recapture data
- Fit various loglinear models for a closed population
- $M_{0}, M_{t}, M_{b}$

Model fitting

- Produce fit statistics for the number of captures on each capture occasion and model performance.
- AIC, BIC, standard error, etc.

Model selection

- Using model fit statistics select the model to be used for estimation

Abundance estimate

- Apply the selected model to compute the abundance estimation and $95 \%$ confidence interval of a closed population


## Results: application to estimate industry firm abundance

- Method was applied to survey data collected from 2015 and 2017:
- 2015 and 2017 data was made compatible in order to apply this technique
- 2017 survey data was far more granular in terms of what crop-varieties were allowed to be report
- Comparison against adjusted 2017 average annual firm counts by six digit NAICS code from QCEW
- QCEW firm counts were adjusted to meet the scope of the survey
- Ratios of eligibility were extracted from 2015 (74\%) and the most recent 2018 (80\%) survey disposition records and then averaged
- Therefore, on average $77 \%$ (0.77) are considered eligible under the scope of the survey
- Example: $100_{\text {total firms }} \times 0.77_{\text {eligible }}=77_{\text {adjusted firms }}$


## Results: Industry estimates

| Industry (NAICS) | Adjusted 2017 QCEW firm count | Abundance estimate | AE | APE | Low 95 | Hi 95 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Other vegetable and melon farming | 225 | 181 | 44 | 20\% | 128 | 284 |
| Apple orchards | 588 | 549 | 39 | 7\% | 483 | 633 |
| Grape vineyards | 156 | 149 | 7 | 4\% | 118 | 201 |
| Berry (except strawberry) farming | 176 | 180 | 4 | 2\% | 137 | 253 |
| Fruit and tree nut combination farming | 18 | 13 | 5 | 28\% | 8 | >37.5 |
| Other noncitrus fruit farming | 713 | 695 | 18 | 3\% | 625 | 782 |
| All other miscellaneous crop farming | 209 | 217 | 8 | 4\% | 129 | 442 |

## Results: Crop estimates

| Crop | Abundance <br> estimate | Low 95 | Hi 95 | Occasion 1 <br> (2015) | Occasion 2 <br> (2017) | Both <br> occasions |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Apples | 943 | 830 | 1086 | 316 | 292 | 98 |
| Berries | 249 | 191 | 344 | 61 | 87 | 22 |
| Cherries | 759 | 665 | 880 | 235 | 276 | 86 |
| Grapes | 266 | 200 | 379 | 70 | 76 | 20 |
| Pears | 513 | 418 | 649 | 131 | 159 | 41 |

## Results: Crop variety estimates

| Crop | Variety | Abundance <br> estimate | Low 95 | Hi 95 | Occasion 1 <br> $(2015)$ | Occasion 2 <br> $(2017)$ | Both <br> occasions |
| :--- | :--- | :--- | :--- | ---: | :--- | :--- | :--- |
| Apple | Braeburn | 105 | 42 | $>315$ | 11 | 18 | 2 |
| Apple | Cripps pink | 113 | 45 | $>338$ | 5 | 25 | 2 |
| Apple | Fuji | 360 | 247 | 577 | 61 | 81 | 14 |
| Apple | Gala | 646 | 506 | 859 | 133 | 159 | 33 |
| Apple | Golden <br> delicious | 439 | 324 | 634 | 82 | 110 | 21 |
| Apple | Granny smith | 455 | 278 | 865 | 54 | 74 | 9 |
| Apple | Honeycrisp | 476 | 327 | 757 | 56 | 113 | 15 |
| Apple | Red delicious | 423 | 310 | 618 | 63 | 121 | 20 |

## Results: Crop variety estimates continued...

| Crop | Variety | Abundance <br> estimate | Low 95 | Hi 95 | Occasion 1 <br> (2015) | Occasion 2 <br> (2017) | Both <br> occasions |
| :--- | :--- | :--- | ---: | ---: | :--- | :--- | :--- |
| Berry | Blueberry | 182 | 117 | 328 | 35 | 46 | 9 |
| Berry | Raspberry | 69 | 51 | 104 | 22 | 33 | 11 |
| Berry | Strawberry | 37 | 20 | 105 | 9 | 12 | 3 |
| Cherry | Dark red | 444 | 332 | 641 | 40 | 200 | 18 |
| Cherry | Red | 725 | 551 | 1001 | 167 | 118 | 28 |
| Cherry | Yellow | 441 | 308 | 685 | 57 | 111 | 16 |
| Pear | Bartlett | 400 | 308 | 547 | 83 | 121 | 26 |
| Pear | Bosc | 469 | 200 | $>1406$ | 18 | 57 | 3 |
| Pear | D'anjou | 355 | 248 | 557 | 60 | 86 | 15 |

## Moving forward

- January $31^{\text {stt }}$, 2019:
- Survey administration and data collection closed
- Worker survey response rate: 42.91\%
- Employer survey response rate (1/20/2019): 42.14\%
- February 28th, 2019:
- University of Washington delivers final survey data set to LMEA
- March, 2019:
- Agricultural survey quarterly meeting to discuss worker estimation method (announcement of date and time will follow shortly)
- Final employer and worker survey analysis and estimation
- April, 2019:
- Conference call with all stakeholders presenting final results
- Feedback period of approximately one week
- Submission of final results to USDOL
- Publication of final results is contingent upon USDOL
- Begin administrative planning for 2019 survey iteration


## References

- Briand, L.C., El Emam, K., Freimut B.G. \& Leiterberger O. (2000). "A comprehensive evaluation of capture-recapture models for estimating software defect content. IEEE Transactions on Software Engineering, 26, 518-540
- Chapman (1951). "Some properties of the hypergeometric distribution with applications to zoological census." University of California Public. Stat. 1, 131-160.
- Cormack, RM (1989). "Loglinear models for Capture-Recapture." Biometrics, 45, 395413.
- Darroch, J.N., Fienberg, S.E., Glonek, G. \& Junker, B. (1993). "A three sample multiple capture-recapture approach to the census population estimation with heterogeneous catchability." Journal of the American Statistical Association, 88, 1137-1148.
- Ebrahimi, N. (1997). "On the statistical analysis of number of errors remaining in a software design document after inspection." IEEE Transactions on Software Engineering, 26, 529-532.
- Fienberg, S.E. (1972). "The multiple recapture census for closed populations and incomplete $2^{k}$ contingency tables." Biometrika, 59, 591-603.


## References continued...

- IWDGMF (International Working Group for Disease Monitoring and Forecasting) (1995a). "Capture-recapture and multiple-record systems estimation, I: History and theoretical development. American Journal of Epidemiology, 142, 1047-1058.
- IWDGMF (International Working Group for Disease Monitoring and Forecasting) (1995b). "Capture-recapture and multiple record systems estimation, II: Applications in human diseases. American Journal of Epidemiology, 142, 1059-1068.
- Petersen, C.G.J. (1896). "The yearly immigration of young plaice into the Limfjord from the German Sea." Rep. Danish Biol. Sta. 6, 1-48.
- Wohlen, C., Runeson, P. \& Brantestam, B. (1995). "An experimental evaluation of capture-recapture in software inspection." Software Testing, Verification and Reliability, 5, 213-232.
- Rivest, L.P. \& Baillargeon, S. (2007). "Rcapture: Loglinear Models for CaptureRecapture in R". Journal of Statistical Software, 19(5).
- Rivest L.P. \% Baillargeon, S. (2014). "Rcapture: Loglinear Models for CaptureRecapture Experiments. R package version 1.4-2. https://cran.rproject.org/web/packages/Rcapture/index.html
- Rivest, L.P. \& Levesque, T. (2001). "Improved Log-linear Model Estimators of Abundance in Capture-Recapture Experiments." Canadian Journal of Statistics, 29, 555-572.


## Contact information

Steven Ross, Director<br>Employment Security Department<br>Labor Market Information<br>Labor Market and Economic Analysis<br>(360) 507-9615<br>sross@esd.wa.gov<br>Gustavo Avilés, Manager<br>Employment Security Department<br>Program Evaluation, Research \& Analysis<br>Labor Market and Economic Analysis<br>(360) 507-9552<br>gaviles@esd.wa.gov<br>Joshua Moll, Research Economist<br>Employment Security Department<br>Program Evaluation, Research \& Analysis<br>Labor Market and Economic Analysis<br>(360) 507-9554<br>jmoll@esd.wa.gov

